Numerical modelling of three-dimensional fluid flow in a spiral compensator

Wolfgang Schachta,*, Evgenii V. Vorozhtsovb, Anatoly F. Voevodinc

aGasversorgung Thueringen GmbH, 99086 Erfurt, Germany
bInstitute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Novosibirsk 630090, Russia
cInstitute of Hydrodynamics, Russian Academy of Sciences, Novosibirsk 630090, Russia

Received 15 January 2004; received in revised form 15 April 2005; accepted 1 June 2005

Abstract

The problem of the numerical modelling of the damping effect of the spiral compensators of percussion–rotary drilling devices is considered. The Roe first-order difference method has been adapted for the computation of a three-dimensional flow of a barotropic compressible fluid on a spatial curvilinear grid. As a result, the distributions of the solution components have been obtained both inside the compensator channel and at its upper outlet. A comparison of the damping effect of the compensator with the results of the one-dimensional computation by a TVD second-order scheme has shown that the three-dimensional computations produce a slightly more pronounced damping effect than the one-dimensional computations.

© 2005 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.

PACS: 65M99; 76B47

Keywords: Finite difference scheme; Compressible flow; Shocks; Friction term

1. Introduction

The percussion–rotary technique is currently the main technique for the drilling of wells in the sedimentary rocks for the exploratory purposes and oil and natural gas production. This technique is inefficient